Corso di Laurea in Ingegneria Gestionale Scritto di Analisi 2 - 9 settembre 2021

- Consegnare solo questi fogli.
- Non sono ammessi libri, quaderni, calcolatrici, telefonini. È ammesso solo un foglio protocollo o 2 fogli A4 con qualsivoglia scritto.

Cognome e nome:		Quiz	E1	E2	E3
	Voto				

PARTE I: Rispondere alle seguenti domande barrando con una crocetta tutte e sole le risposte ritenute corrette. Le cancellature verranno considerate solo se di chiaro significato. Ogni domanda contiene almeno una (talvolta anche più di una!) risposta corretta. Ogni quiz è considerato corretto se sono state indicate tutte e sole le risposte corrette. Quiz corretti valgono 2, quiz con risposta errata valgono $-\frac{2}{3}$. Gli esercizi valgono 5 punti

- **Q1)** La somma della serie $\sum_{n=2}^{\infty} (-1)^n \frac{3}{2^n}$ è
 - (a) $-\frac{1}{4}$.
 - (b) 2.
 - (c) Nessuna delle altre risposte.
 - (d) -4.
 - (e) $-\frac{1}{2}$.
- **Q2)** Sia $(a_n)_n$ una successione con $0 < a_n < 1$ per ogni $n \in \mathbb{N}$ e tale che $\sum_{n=0}^{\infty} a_n$ converge as S. Quale(i) delle seguenti affermazioni è (sono) corretta(e)?
 - (a) $\sum_{n=0}^{\infty} a_n^2$ converge a T = S.
 - (b) $\sum_{n=0}^{\infty} a_n^2$ converge a T > S.
 - (c) $\sum_{n=0}^{\infty} a_n^2$ converge a T < S.
 - (d) $\sum_{n=0}^{\infty} a_n^2$ diverge positivamente.
 - (e) Le ipotesi non consentono né di stabilire il carattere né di stimare la somma della serie $\sum_{n=0}^{\infty} a_n^2$.
- **Q3)** Sia data la successione di funzioni $f_n(x) = \frac{\sin(nx) + x^n}{n}$, $x \in \mathbb{R}$. Quale(i) delle seguenti affermazioni è (sono) corretta(e)?
 - (a) f_n converge uniformemente in \mathbb{R} .
 - (b) f_n converge puntualmente in \mathbb{R} .

 - (c) f_n converge uniformemente in $\left(-\frac{1}{2}, \frac{1}{2}\right]$. (d) f_n converge puntualmente in $[-\pi, \pi]$.
 - (e) Nessuna delle altre opzioni.

Q4) Sia data la funzione $f: \mathbb{R}^3$	$\to \mathbb{R}$ definita da $f(x)$	$(x, y, z) = x^2 - y^2.$	Quale(i) de	elle seguenti a	ffermazioni è	(sono)
corretta(e)?						

- (a) È limitata superiormente o inferiormente.
- (b) È illimitata sia superiormente che inferiormente.
- (c) Non ha punti critici.
- (d) Ha un solo punto di sella.
- (e) Nessuna delle altre opzioni.
- **Q5)** La relazione $x^3 y^4 + xy = 1$, $(x, y) \in \mathbb{R}^2$, definisce implicitamente una funzione $y \mapsto g(y)$ in un intorno del punto (1, 1). La sua retta tangente in (1, 1) è data da
 - (a) $x = \frac{3}{4}y + \frac{1}{4}$.
 - (b) $y = \frac{3}{4}x + \frac{3}{4}$.
 - (c) y = 2x 1.
 - (d) Nessuna delle altre risposte.
 - (e) 4x 3y 1 = 0.
- **Q6)** Sia $\Omega=\{(x,y,z)\in\mathbb{R}^3\ :\ 0\leq z\leq 3x+2y,\ 0\leq x\leq 3,\ 2\leq y\leq x+2\}.$ L'integrale $\int_{\Omega}\frac{z}{3x+2y}\,dx\,dy\,dz$ vale
 - (a) 18
 - (b) 3
 - (c) 27
 - (d) 54
 - (e) $\frac{27}{2}$
- **Q7)** Sia $\Gamma = \{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} = 1\}$. L'integrale curvilineo $\int_{\Gamma} x$ vale
 - (a) -4
 - (b) 0
 - (c) 4
 - (d) 8
 - (e) nessuno degli altri valori proposti.
- Q8) Il campo vettoriale $F(x,y)=\left(\frac{x}{x^2+y^2},\frac{y}{x^2+y^2}\right)$ su $E=\mathbb{R}^2\setminus\{(0,0)\}$
 - (a) è irrotazionale (corrispondente forma differenziale chiusa)
 - (b) non è conservativo
 - (c) è conservativo (corrispondente forma differenziale esatta)
 - (d) non è irrotazionale
 - (e) nessuna delle altre risposte

PARTE II: Svolgere i seguenti esercizi nello spazio a disposizione. Le risposte non motivate, senza conti o incomprensibili non saranno prese in considerazione.

- 1) Sia $f_n(x) = n\left(\sqrt{x + \frac{1}{n}} \sqrt{x}\right), x > 0.$
 - 1. Trovare, per $x>0\,,$ il limite puntuale f(x) di $f_n(x)$ al tendere di n ad infinito.
 - 2. Discutere la convergenza uniforme di f_n a f in $(0, +\infty)$ ed in $(a, +\infty)$ con a > 0.

2) Sia

$$f(x,y) = x^2 - xy^2.$$

- 1. Trovare l'estremo superiore ed inferiore di f in \mathbb{R}^2 .
- 2. Determinare i punti critici di f e la loro natura.
- 3. Calcolare il massimo e il minimo assoluto di f sul cerchio unitario $C=\{(x,y)\in\mathbb{R}^2:\,x^2+y^2\leq 1\}.$

3) Date le forma differenziali

$$\omega_1(x,y) = 6x^2y \, dy, \qquad \omega_2(x,y) = 6xy^2 \, dx + 12x^2y \, dy,$$

 $\omega_3(x,y) = \left[6xy^2 + \log(1 + \arctan^2 3x) - e^{x^8 - \operatorname{sen} x}\right] dx + \left[12x^2y - \cos(y^4 + e^{y^2 - 7y}) + \arctan(1 + \operatorname{sen}^2 y)\right] dy,$ calcolare $\int_{\partial\Omega} \omega_1$, $\int_{\partial\Omega} \omega_2$ e $\int_{\partial\Omega} \omega_3$, ove $\partial\Omega$ è il bordo del seguente insieme, percorso in senso antiorario:

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 5, \ 0 \le y \le x + 1, \ x \ge 0\}$$

(o, equivalentemente, calcolare la circuitazione su $\partial\Omega$ del campo vettoriale associato ad ω).